Abadi, Martı́n, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, et al. 2015. “TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.”

Antonio, Katrien, Jan Beirlant, Tom Hoedemakers, and Robert Verlaak. 2006. “Lognormal Mixed Models for Reported Claims Reserves.” North American Actuarial Journal 10 (1): 30–48.

Bates, Douglas, Martin Mächler, Ben Bolker, and Steve Walker. 2015. “Fitting Linear Mixed-Effects Models Using lme4.” Journal of Statistical Software 67 (1): 1–48.

Bååth, Rasmus. 2012. “Kruschke Style Diagrams.”

Betancourt, Michael. 2017. “A Conceptual Introduction to Hamiltonian Monte Carlo.”

———. 2018. “Towards a Principled Bayesian Workflow (RStan).”

Bornhuetter, R.L., and R. E. Ferguson. 1972. “The Actuary and IBNR.” Proceedings of the Casualty Actuarial Society LIX: 181–95.

Bühlmann, H., and E. Straub. 1970. “Glaubgwürdigkeit Für Schadensätze.” Bulletin of the Swiss Association of Actuaries 70: 111–33.

Bürkner, Paul-Christian. 2017. “brms: An R Package for Bayesian Multilevel Models Using Stan.” Journal of Statistical Software 80 (1): 1–28.

Carpenter, Bob, Andrew Gelman, Matthew Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. 2017. “Stan: A Probabilistic Programming Language.” Journal of Statistical Software, Articles 76 (1): 1–32.

Carrato, Alessandro, and Michele Visintin. 2019. From the Chain Ladder to Individual Claims Reserving Using Machine Learning Techniques. ASTIN Colloquium.

CAS Loss Simulation Model Working Party. 2018. “CAS Loss Simulator 2.0.”

Clark, David R. 2003. LDF Curve-Fitting and Stochastic Reserving: A Maximum Likelihood Approach. Casualty Actuarial Society;

Cooney, Mick. 2017. “Modelling Loss Curves in Insurance with RStan.” Stan Case Studies 4.

England, Peter D, and Richard J Verrall. 2001. “A Flexible Framework for Stochastic Claims Reserving.” Proceedings of the Casualty Actuarial Society 88 (1): 1–38.

Fannin, Brian A. 2018. Raw: R Actuarial Workshops.

Gabrielli, Andrea, Ronald Richman, and Mario V Wüthrich. 2018. “Neural Network Embedding of the over-Dispersed Poisson Reserving Model.” Available at SSRN: Https://

Gao, Guangyuan. 2018. Bayesian Claims Reserving Methods in Non-Life Insurance with Stan: An Introduction. Springer.

Gelman, A., B. Carlin, H. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. 2014. Bayesian Data Analysis, Third Edition (Chapman & Hall/Crc Texts in Statistical Science). Hardcover; Chapman; Hall/CRC.

Gelman, Andrew, and Jennifer Hill. 2007. Data Analysis Using Regression and Multilevel/Hierarchical Models. Analytical Methods for Social Research. United Kingdom: Cambridge University Press.

Gesmann, Markus. 2002. “Modellierung Und Analyse Neuronaler Dynamiken (Modelling and Analysing Neuronal Dynamics).” Master’s thesis, University of Cologne.

———. 2018. “Hierarchical Loss Reserving with Growth Curves Using Brms.”

Gesmann, Markus, and Diego de Castillo. 2011. “googleVis: Interface Between R and the Google Visualisation API.” The R Journal 3 (2): 40–44.

Gesmann, Markus, Dan Murphy, Wayne Zhang, Alessandro Carrato, Mario Wüthrich, and Fabio Concina. 2020. ChainLadder: Statistical Methods and Models for Claims Reserving in General Insurance.

Guszcza, James. 2008. “Hierarchical Growth Curve Models for Loss Reserving.” In Casualty Actuarial Society E-Forum, Fall 2008, 146–73.

Kruschke, J. 2014. Doing Bayesian Data Analysis: A Tutorial with R, Jags, and Stan. Elsevier Science.

Kuo, Kevin. 2018. “DeepTriangle: A Deep Learning Approach to Loss Reserving.” arXiv Preprint arXiv:1804.09253.

Lally, Nathan, and Brian Hartman. 2018. “Estimating Loss Reserves Using Hierarchical Bayesian Gaussian Process Regression with Input Warping.” Insurance: Mathematics and Economics 82: 124–40.

Lewandowski, Daniel, Dorota Kurowicka, and Harry Joe. 2009. “Generating Random Correlation Matrices Based on Vines and Extended Onion Method.” Journal of Multivariate Analysis 100 (9): 1989–2001.

Lunn, David J, Andrew Thomas, Nicky Best, and David Spiegelhalter. 2000. “WinBUGS-a Bayesian Modelling Framework: Concepts, Structure, and Extensibility.” Statistics and Computing 10 (4): 325–37.

Mack, Thomas. 1993. “Distribution-Free Calculation of the Standard Error of Chain Ladder Reserve Estimates.” ASTIN Bulletin 23: 213–25.

McElreath, R. 2015. Statistical Rethinking: A Bayesian Course with Examples in R and Stan. Chapman & Hall/CRC Texts in Statistical Science. CRC Press.

McNulty, Gregory. 2017. “Severity Curve Fitting for Long Tailed Lines: An Application of Stochastic Processes and Bayesian Models.” Variance 11 (1): 118–32.

Meyers, Glenn. 2015. Stochastic Loss Reserving Using Bayesian MCMC Models. CAS Monograph Series.; Casualty Actuarial Society.

Morris, Jake. 2016. Hierarchical Compartmental Models for Loss Reserving. Casualty Actuarial Society Summer E-Forum;

Parodi, Pietro. 2014. “Triangle-Free Reserving. A Non-Traditional Framework for Estimating Reserves and Reserve Uncertainty.” British Actuarial Journal 19 (1): 219–33.

Plummer, Martyn. 2003. “JAGS: A Program for Analysis of Bayesian Graphical Models Using Gibbs Sampling.”

R Core Team. 2019. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing;

Salvatier, John, Thomas V. Wiecki, and Christopher Fonnesbeck. 2016. “Probabilistic Programming in Python Using PyMC3.” PeerJ Computer Science 2 (April): e55.

Schmid, Frank. 2010. “Robust Loss Development Using MCMC.” SSRN Electronic Journal, February.

Schmidt, Klaus D. 2006. “Methods and Models of Loss Reserving Based on Run-Off Triangles : A Unifying Survey.” CAS Fall Forum, 269–317.

Scollnik, D. P. M. 2001. “Actuarial Modeling with MCMC and BUGS.” North American Actuarial Journal 5 (2): 96–124.

Sherman, Richard E. 1984. “Extrapolating, Smoothing, and Interpolating Development Factors.” Proceedings of the Casualty Actuarial Society LXXI (135,136): 122–55.

Stan Development Team. 2019. “RStan: The R Interface to Stan.”

Taylor, Greg C, and FR Ashe. 1983. “Second Moments of Estimates of Outstanding Claims.” Journal of Econometrics 23 (1): 37–61.

Verrall, Richard. 2004. “A Bayesian Generalized Linear Model for the Bornhuetter-Ferguson Method of Claims Reserving.” North American Actuarial Journal 8 (July).

Winkel, Brian J. 1994. “Modelling Mixing Problems with Differential Equations Gives Rise to Interesting Questions.” International Journal of Mathematical Education in Science and Technology 25 (1): 55–60.

Wüthrich, Mario V. 2018. “Machine Learning in Individual Claims Reserving.” Scandinavian Actuarial Journal 2018 (6): 465–80.

Zehnwirth, Ben, and Glen Barnett. 2000. “Best Estimates for Reserves.” Proceedings of the CAS LXXXVII (167).

Zhang, Yanwei, Vanja Dukic, and James Guszcza. 2012. “A Bayesian Nonlinear Model for Forecasting Insurance Loss Payments.” Journal of the Royal Statistical Society, Series A 175: 637–56.